May 8, 2020

Next Generation Sequencing in Limited Resource Settings

Phillip G. Febbo, MD

Unlocking the power of the genome to improve human health

CONFIDENTIAL – DO NOT DISTRIBUTI

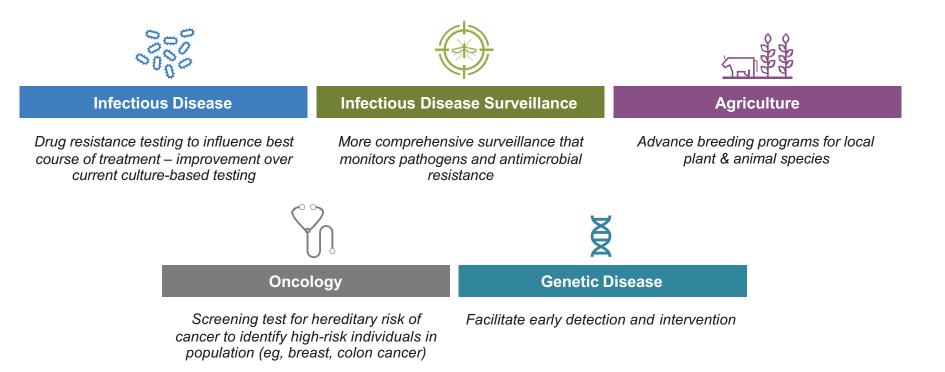
Genomic Research & Testing is Unlocking Insights

Empowering genetic analysis and facilitating a deeper understanding of genetic variation and function to drive advancements in medicine, agriculture, and many other areas

Genomics Research Today

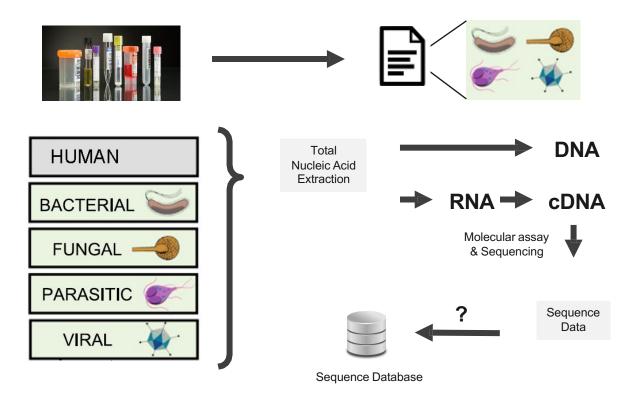
Takes place in government, university, pharmaceutical, biotechnology, and agrigenomics laboratories around the world, to better our understanding of the relationship between gene sequence and biological processes

Advancing Healthcare


Researchers who investigate human and nonhuman genetic variation to understand the mechanisms of disease are enabling the development of more effective diagnostics and therapeutics

Advancing Quality of Life

Research also provides greater insight into genetic variation in plants (e.g., food and biofuel crops) and animals (e.g., livestock and domestic), enabling improvements in crop yields and animal breeding programs.



Potential Genomics Use Cases in Country

Interrogation of Nucleic Acid Sequences Allows for Unbiased Detection of Organisms

illumina

5

Images © 2014 Naccache et al.; Published by Cold Spring Harbor Laboratory Press.

Clinical Microbiology Workflow and Applications using NGS

Isolate Sequencing

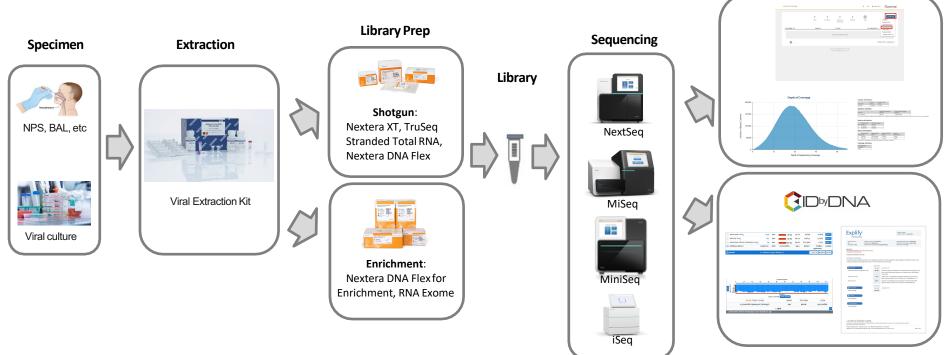
Whole genome sequencing of a single culture

de-novo assembly and gene annotation

Targeted Panels

Enrichment of a specific set of targets (organism, functional genes, antimicrobial resistance)

Shotgun Metagenomics


Whole genome sequencing directly from microbiology clinical samples

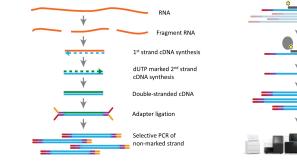
Comparison to reference microbial genome databases

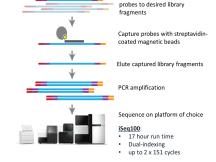
illumina

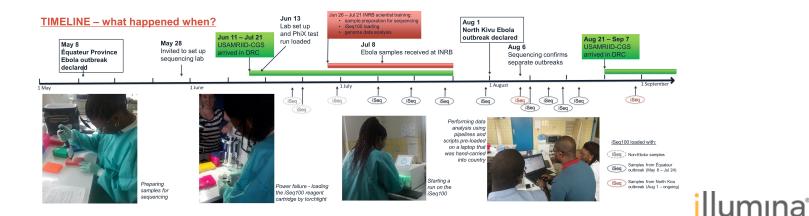
Basic Workflows for Cultured/Direct from Patient Samples

Local Data Analysis

Cloud-Based Data Analysis


	iSeq 100	MiniSeq	MiSeq Series O	NextSeq 550 Series O	NextSeq 2000	
Popular Applications & Methods	Key Application	Key Application	Key Application	Key Application	Key Application	Shotgun
Large Whole-Genome Sequencing (human, plant, animal)						metagenomic workflows are
Small Whole-Genome Sequencing (microbe, virus)	٠	•	•	•	•	most efficiently performed on t MiSeq and NextSeq550 • Enrichment
Exome & Large Panel Sequencing (enrichment-based)				•	•	
Targeted Gene Sequencing (amplicon- based, gene panel)	•	•	•	•	•	
miRNA & Small RNA Analysis	٠	•	•	•		workflows car
DNA-Protein Interaction Analysis (ChIP- Seq)			۲	•	•	performed on lower-through instruments, s as MiSeq, MiniSeq, and is
Methylation Sequencing				•	•	
16S Metagenomic Sequencing		•	•	•	•	
Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)			•		•]
Cell-Free Sequencing & Liquid Biopsy Analysis				•	•	•
Run Time	9.5–19 hrs	4–24 hours	4–55 hours	12-30 hours	24-48 hours	
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb	300 Gb*	
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million	1 billion [*]	illumina
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp	2 × 150 bp	IIIIII


Hybridization Capture - Management of DiseaseOutbreaks



iSeq100 running samples in the DRC genomics lab

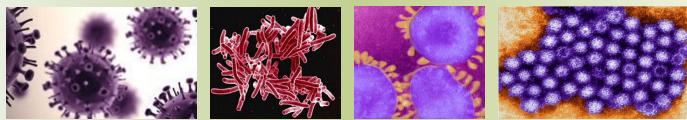
Hybridization of biotin-labelled

METHOD – stranded RNA-seq with targeted enrichment

Example: Infectious Disease

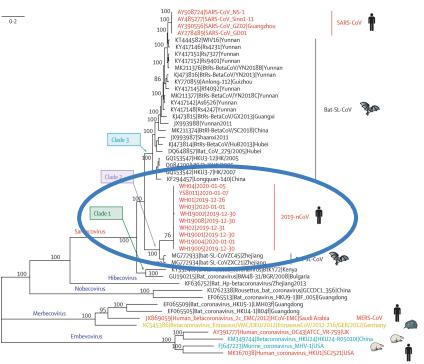
TB Drug Resistance Testing to Influence the Best Course of Treatment

- Drug-resistant TB is a public health crisis and focus for the WHO and country TB programs
 - Globally, 3.4% of new TB cases and 18% of previously treated TB cases had drug-resistant TB¹
- Rapid detection & screening is done with cheaper methods. However, these methods cannot resolve complex drug resistance, which is essential to guide patient care.
 - Comprehensive drug susceptibility testing (DST) is performed after patients test positive for TB and then positive for resistance to first-line therapy (rifampicin-resistant TB)
 - Today, comprehensive DST is performed using culture, which takes 4+ weeks
- Opportunity for NGS tests to replace conventional DST: accurate and more rapid results for both firstline and second-line anti-TB drug¹ vs. culture


1(01)WHO 2019 report, pg. 2 and pg. 57, respectively

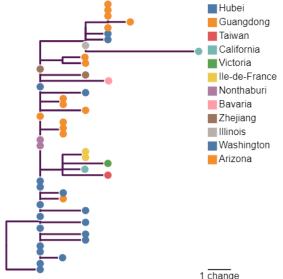
Example: Infectious Disease Surveillance

Tracking Pathogens and Antimicrobial Resistance


- Traditional methods of assessing infectious agents are typically limited to a small & defined set of organisms
- NGS provides a universal, hypothesis-free method for infectious disease surveillance that can be used with viruses, bacteria, or parasites
- NGS is also able to better identify & monitor antimicrobial resistance
- Future opportunity in HIV drug resistance testing
 - HIV/TB co-infection rates are high, and HIV is another global health priority (95-95-95 UNAIDS goal)
- Additional opportunity for Surveillance panel
 - Public Health (e.g. CDC Africa; Flemming Fund) and professional societies are strengthening surveillance efforts in Africa from One-Health perspective
 - Long-term opportunity for a "pan-infectome" and antimicrobial resistance (AMR) NGS panel approaches for broad detection of pathogen AMR, mainly starting in surveillance

Use of Clinical Metagenomics in the 2019-nCoV Outbreak

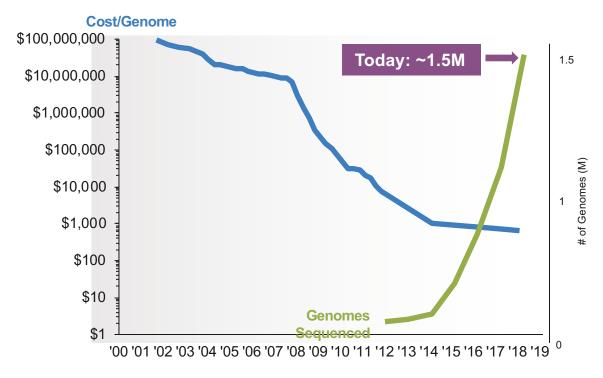
- NGS was used to initially identify the unknown virus from Wuhan Province, China
 - Shotgun metagenomic workflow enabled unbiased characterization of unknown viral pathogen
- Bioinformatic analysis linked sequence to Betacoronavirus genus
- Phylogenetic tree showed a distinct species related to bat CoV and relatively distant from SARS and MERS
- Information concerned public health officials, as novel viruses have unpredictable transmissibility, morbidity, and mortality



illumina

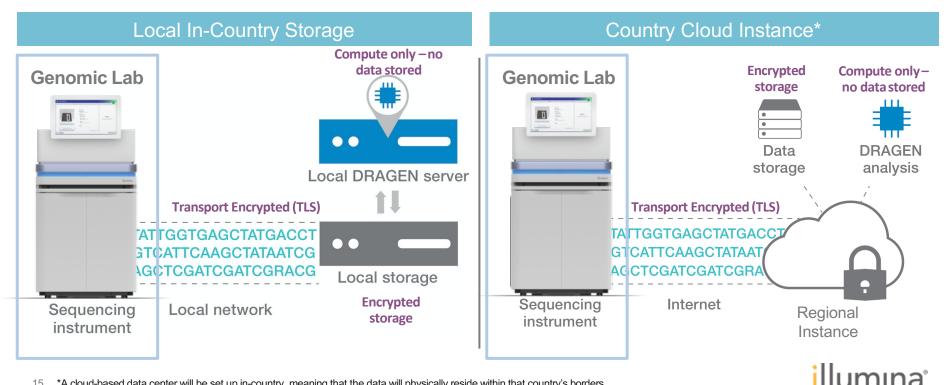
NGS in 2019-nCoV Outbreak Management

- The use of NGS remains vital to ongoing outbreak management, to enable:
 - Confirmation of all PCR positive samples, per guidance by WHO¹
 - Viral evolution tracking
 - Monitoring for viral shift or potential to escape PCR diagnostic
 - Development of vaccine candidates
- Sequencing can be performed from viral culture or directly from clinical specimens, such as BAL


http://virological.org/t/phylodynamic-analysis-46-genomes-31-jan-2020/356

Illumina NGS Technology Has Helped Reduce the Cost of Sequencing While Providing Ability to Scale

Ability to cost-effectively sequence large sample sizes quickly and accurately, generating vast amounts of high-quality data.


These break-throughs in **cost** & **throughput** allow for greater adoption of sequencing, which further enables communities to unlock genomic insights that drive advancements

Country Data Infrastructure

Local data stays local, and is encrypted and protected to international security standards

Two Potential Options for Storage & Security

*A cloud-based data center will be set up in-country, meaning that the data will physically reside within that country's borders 15

CONFIDENTIAL - DO NOT DISTRIBUTE

Embedded Commitment to Data Security

Rare and Undiagnosed Genetic Disease

When considered as a whole, genetic diseases are aglobal public health crisis Individuals with HIV: ~40M⁴ | Number of Malaria cases/year: 212M⁴

¹<u>https://www.omim.org</u>

²Global Genes RARE Facts & Statistics: <u>https://globalgenes.org/rare-diseases-facts-statistics/</u>
³Rare Disease Impact Report: Insights from patients and the medical community. Shire. 2013
⁴World Health Organization. <u>http://www.who.int/</u>

illumina

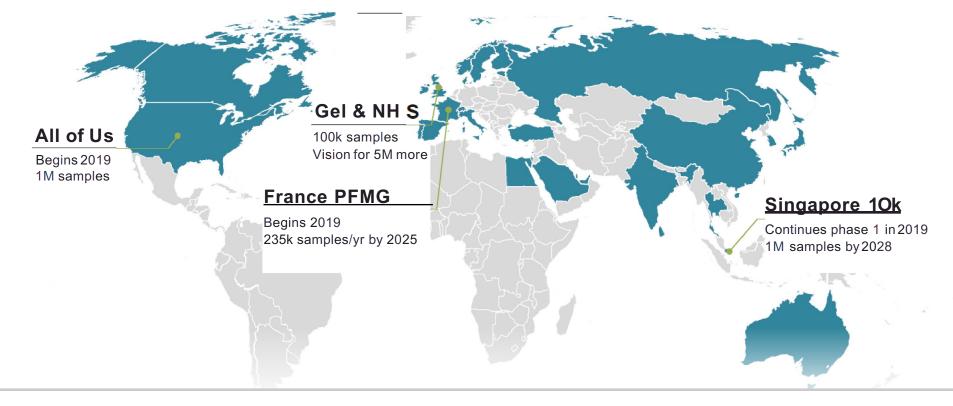
Diagnostic Yield Across Studies

Study*	Diagnostic Yield	Notes Clinic-based WES pilot study (N=250)		
Yang et al 2013 NEJM	~22%			
Yang et al 2014 JAMA	~25%	Follow-up to the above; N=2000, 504 with diagnosis; ~5% ACMG incidental findings return		
Lee et al 2014 JAMA	~25–30%	Rare disease cohort of 814 patients; proband-only and trio sequencing		
Srivastava et al 2014 Ann Neurology	41%	WES in a child neurology clinic		
Gilissen et al 2014 Nature	60%	WGS in children with Intellectual Disability		
Taylor et al 2015 Nature Genetics	34% (57%)	WGS of 68 Mendelian disorders (14 with trios)		
Stavropoulos et al 2016 Genomic Medicine	34%	WGS of 100 Neurodevelopmental Delay patients; direct comparison to array 3,040 consecutive WES cases at GeneDx WES of 71 children with white matter disease; family trio+		
Retterer et al. 2016 Genetics in Medicine	28–55% per indication			
Vanderver et al. 2016 Annals of Neurology	42% (+)			
Tarailo-Graovac et al 2016 NEJM	68%	WES of 41 patients with intellectual developmental disorder and unexplained metabolic phenotypes. 44% had a change in care.		
Tan et al 2017 JAMA Pediatrics	52%	WES of ambulant children with suspected monogenic conditions		
Lionel et al 2017 GIM	41%	WGS and panel assessment of pediatric outpatients from diverse subspecialities		

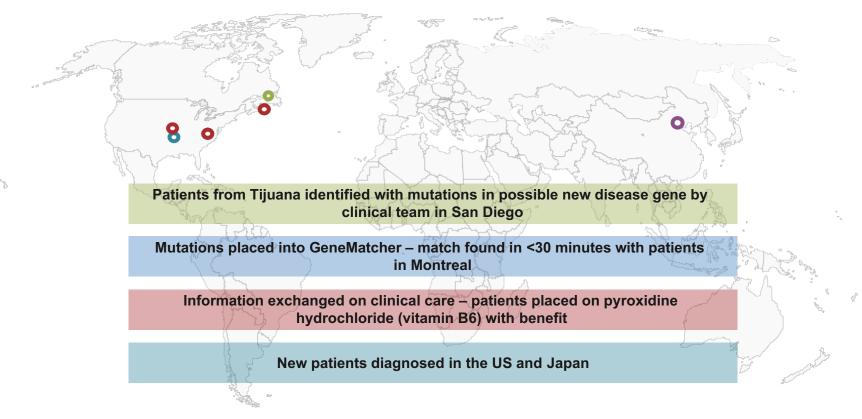
*Full citations available upon request

iHope Network

Donating clinical whole genome sequencing tests (cWGS) to help find answers for underserved families with children facing rare and undiagnosed diseases



iHope: Hospital Infantil de Las Californias


- Clinical team is led by Dr Marilyn Jones and Diane Masser-Frye MS MSW
- Phenotyping and sample collection take place on "Genome Days"
- Thus far 60 cases have been processed
- Majority had no previous genetic testing
- Mutations span the mutational spectrum, but more than half were structural variations that would have been missed by many other tests
- Returned likely causal variants in 41 cases (68% diagnostic yield)
- Despite resource limitations, <u>29% had a change in management</u>

Global Emeirgence of Population Genomics

ANew Disease...a New Treatment

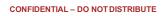
Why WGS is Ready for Prime Time

Most **comprehensive** methodology

Better ability to detect *de novo* variants

Simpler, faster workflow than WES

Ability to identify **multiple genetic variants in single patient** contributing to phenotype


The best way to interrogate the exome is through WGS

Capable of re-analysis of nondiagnosed patients

illumina

For Research Use Only. Not for use in diagnostic procedures.

Illumina Commitment to Quality and PatientCare

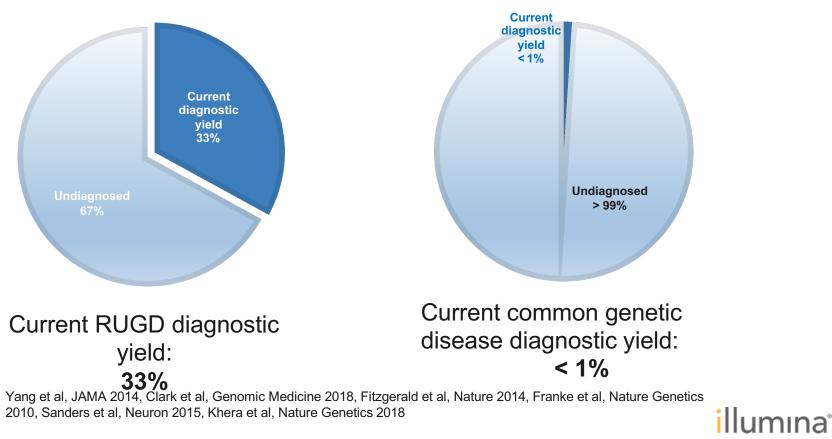
iHOPE Network

- Illumina launched consortium of member institutions in 2017
- iHope Network members have committed to a minimum philanthropic donation of 10 whole-genome tests per year (patients from a clinical referral network of >30 US and international sites)
- Agreed to donate the variants to public databases (e.g., Clinvar)

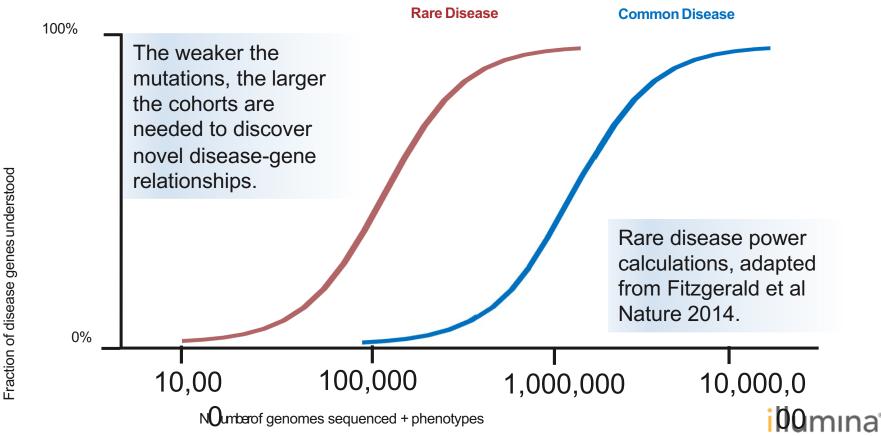
HUDSONALPHA INSTITUTE FOR BIOTECHNOLOGY

Undiagnosed Diseases Network

- Illumina is a supporter of the Undiagnosed Diseases Network (UDN)
- The UDN made up of clinical and research centers across the United States working to improve diagnosis and care of patients with undiagnosed diseases
- To date, the UDN has completed exome or genome sequencing for over 1000 patients and has published over 50 manuscripts

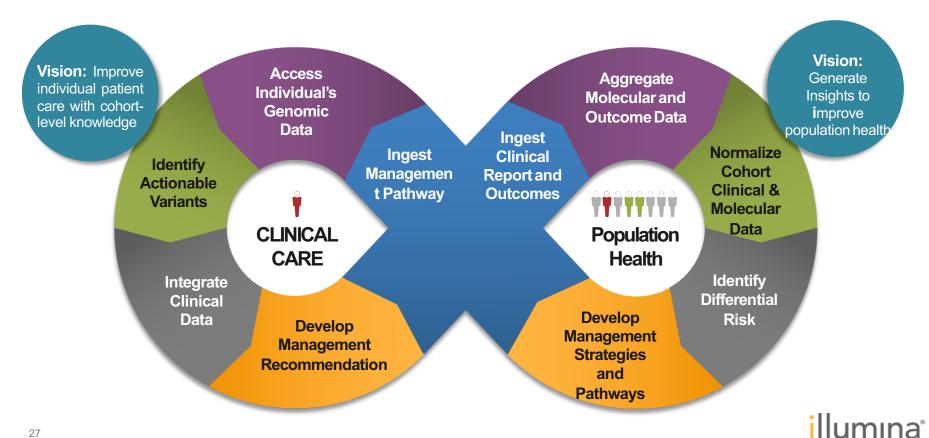

Medical Genome Initiative

- Consortium from 8 leading health care and research organizations in the U.S. and Canada
- Focus on the publication of common laboratory and clinical best practices for the application of clinical Whole-Genome Sequencing
 - Baylor Genetics
 - Broad Institute of MIT and Harvard
 - HudsonAlpha Institute for Biotechnology
 - Illumina
 - Mayo Clinic
 - Rady Children's Institute for Genomic Medicine
 - The Hospital for Sick Children (SickKids Toronto)
 - Stanford Medicine



For Research Use Only. Not for use in diagnostic procedures.

Diagnostic yields remain very low



> 50% of disease genes are yet to be discovered

Concept of a Learning Health System

The Infinite Cycle of Genomic Medicine: Fully Reap the Benefits of Big Data in the Context of Clinical Care

Thank you

